Additional Information
Humans get vitamin D from their normal diet, dietary supplements and from exposure to sunlight.1-5 Ultraviolet B irradiation of the skin drives the conversion of 7-dehydrocholesterol to previtamin D3, which is then rapidly converted to vitamin D3.1 Vitamin D from the skin and diet is further metabolized in the liver to 25-(OH) vitamin D (or calcidiol).1-5 Calcidiol is the principle circulating reservoir of vitamin D in plasma and is generally the best indicator of overall vitamin D status. Calcidiol is further converted by the enzyme 25-(OH) D-1α-hydroxylase (CYP27B1) in the proximal tubules of the kidney to the biologically active form of vitamin D, 1,25-(OH)2 vitamin D (or calcitriol).1-5 The renal production of calcitriol is tightly regulated by plasma parathyroid hormone (PTH)1-5 and fibroblast growth factor 23 (FGF-23). FGF-23 is a circulating hormone synthesized by osteocytes and osteoblasts.5-8 Calcitriol and phosphate intake stimulates the synthesis of FGF-23, which, in turn, suppresses calcitriol synthesis and activates calcitriol conversion to inactive metabolites.1-6
Calcitriol is a steroid-like hormone that binds to a specific cytoplasmic vitamin D receptor (VDR) in the cytoplasm of target cells. The calcitriol-VDR complex then migrates into the nucleus, where its effects are mediated at a transcriptional level.5 Renal production of calcitriol is important in the regulation of serum calcium homeostasis and in the maintenance of healthy bone.1,2,9-11 Calcitriol stimulates the absorption of calcium and phosphate by the intestine and increases calcium and phosphate resorption by the kidney.1-6,12,13 Calcitriol also suppresses PTH production and regulates osteoblast function and bone resorption.5 It has been suggested that calcitriol has roles beyond the calcium-skeletal axis.
Reviews
There are no reviews yet.